--- title: "Static timeline plots with gg_vistime()" date: "`r format(Sys.Date(), '%B %Y')`" output: prettydoc::html_pretty: theme: architect highlight: github toc: true vignette: > %\VignetteIndexEntry{Static timeline plots with gg_vistime()} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(vistime) ``` [![Buy Me A Coffee](https://i.imgur.com/xI5UtRm.png)](https://www.buymeacoffee.com/shosaco) **Feedback welcome:** sa.ra.online@posteo.de ## 1. Basic example `gg_vistime()` produces **ggplot2** charts. For interactive **Plotly** output, see `vistime()`, for interactive **Highcharts** output, see `hc_vistime()`. ```{r gg_vistime_basic_ex, warning=FALSE, fig.width=5, fig.height=1.5} timeline_data <- data.frame(event = c("Event 1", "Event 2"), start = c("2020-06-06", "2020-10-01"), end = c("2020-10-01", "2020-12-31"), group = "My Events") gg_vistime(timeline_data) ``` ## 2. Installation To install the package from CRAN, type the following in your R console: ```{r eval=FALSE} install.packages("vistime") ``` ## 3. Usage and default arguments The simplest way to create a timeline is by providing a data frame with `event` and `start` columns. If your columns are named otherwise, you need to tell the function using the `col.` arguments. You can also tweak the y positions, linewidth, title, label visibility and number of lines in the background. ```{r eval = FALSE} gg_vistime(data, col.event = "event", col.start = "start", col.end = "end", col.group = "group", col.color = "color", col.fontcolor = "fontcolor", optimize_y = TRUE, linewidth = NULL, title = NULL, show_labels = TRUE, background_lines = NULL) ``` ## 4. Arguments parameter | optional? | data type | explanation --------- |----------- | -------- | ----------- data | mandatory | data.frame | data.frame that contains the data to be visualized col.event | optional | character | the column name in data that contains event names. Default: *event* col.start | optional | character | the column name in data that contains start dates. Default: *start* col.end | optional | character | the column name in data that contains end dates. Default: *end* col.group | optional | character | the column name in data to be used for grouping. Default: *group* col.color | optional | character | the column name in data that contains colors for events. Default: *color*, if not present, colors are chosen via RColorBrewer. col.fontcolor | optional | character | the column name in data that contains the font color for event labels. Default: *fontcolor*, if not present, color will be black. optimize_y | optional | logical | distribute events on y-axis by smart heuristic (default) or use order of input data. linewidth | optional | numeric | override the calculated linewidth for events. Default: heuristic value. title | optional | character | the title to be shown on top of the timeline. Default: empty. show_labels | optional | logical | choose whether or not event labels shall be visible. Default: `TRUE`. background_lines | optional | integer | the number of vertical lines to draw in the background to demonstrate structure. Default: 10. ## 5. Value * `gg_vistime` returns an object of class `gg` and `ggplot` ## 6. Examples ### Ex. 1: Presidents ```{r presidents example, fig.height = 2.5, fig.width=5} pres <- data.frame(Position = rep(c("President", "Vice"), each = 3), Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"), start = c("1789-03-29", "1797-02-03", "1801-02-03"), end = c("1797-02-03", "1801-02-03", "1809-02-03"), color = c('#cbb69d', '#603913', '#c69c6e'), fontcolor = c("black", "white", "black")) gg_vistime(pres, col.event = "Position", col.group = "Name", title = "Presidents of the USA") ``` ### Ex. 2: Project Planning ```{r project planning example, fig.height = 4.5, fig.width=10} data <- read.csv(text="event,group,start,end,color Phase 1,Project,2016-12-22,2016-12-23,#c8e6c9 Phase 2,Project,2016-12-23,2016-12-29,#a5d6a7 Phase 3,Project,2016-12-29,2017-01-06,#fb8c00 Phase 4,Project,2017-01-06,2017-02-02,#DD4B39 Room 334,Team 1,2016-12-22,2016-12-28,#DEEBF7 Room 335,Team 1,2016-12-28,2017-01-05,#C6DBEF Room 335,Team 1,2017-01-05,2017-01-23,#9ECAE1 Group 1,Team 2,2016-12-22,2016-12-28,#E5F5E0 Group 2,Team 2,2016-12-28,2017-01-23,#C7E9C0 3-200,category 1,2016-12-25,2016-12-25,#1565c0 3-330,category 1,2016-12-25,2016-12-25,#1565c0 3-223,category 1,2016-12-28,2016-12-28,#1565c0 3-225,category 1,2016-12-28,2016-12-28,#1565c0 3-226,category 1,2016-12-28,2016-12-28,#1565c0 3-226,category 1,2017-01-19,2017-01-19,#1565c0 3-330,category 1,2017-01-19,2017-01-19,#1565c0 1-217.0,category 2,2016-12-27,2016-12-27,#90caf9 4-399.7,moon rising,2017-01-13,2017-01-13,#f44336 8-831.0,sundowner drink,2017-01-17,2017-01-17,#8d6e63 9-984.1,birthday party,2016-12-22,2016-12-22,#90a4ae F01.9,Meetings,2016-12-26,2016-12-26,#e8a735 Z71,Meetings,2017-01-12,2017-01-12,#e8a735 B95.7,Meetings,2017-01-15,2017-01-15,#e8a735 T82.7,Meetings,2017-01-15,2017-01-15,#e8a735") gg_vistime(data) ``` ### Ex. 3: Gantt Charts The argument `optimize_y` can be used to change the look of the timeline. `TRUE` (the default) will find a nice heuristic to save `y`-space, distributing the events: ```{r gantt_true, fig.height = 2.3, fig.width=6} data <- read.csv(text="event,start,end Phase 1,2020-12-15,2020-12-24 Phase 2,2020-12-23,2020-12-29 Phase 3,2020-12-28,2021-01-06 Phase 4,2021-01-06,2021-02-02") gg_vistime(data, optimize_y = TRUE, linewidth = 25) ``` `FALSE` will plot events as-is, not saving any space: ```{r gantt_false, fig.height = 3.7, fig.width=6} gg_vistime(data, optimize_y = FALSE, linewidth = 25) ``` ## 7. Export of vistime as PNG Once created, you can use `ggplot2::ggsave()` for saving your vistime chart as PNG: ```{r eval=FALSE} chart <- vistime(pres, col.event = "Position") ggplot2::ggsave("presidents.png", timeline) ``` ## 8. Usage in Shiny apps - `gg_vistime()` objects can be integrated into Shiny via `plotOutput()` and `renderPlot()` ```{r eval=FALSE} library(vistime) pres <- data.frame(Position = rep(c("President", "Vice"), each = 3), Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"), start = c("1789-03-29", "1797-02-03", "1801-02-03"), end = c("1797-02-03", "1801-02-03", "1809-02-03"), color = c('#cbb69d', '#603913', '#c69c6e'), fontcolor = c("black", "white", "black")) shinyApp( ui = plotOutput("myVistime"), server = function(input, output) { output$myVistime <- renderPlot({ vistime(pres, col.event = "Position", col.group = "Name") }) } ) ``` ## 9. Customization Since every `gg_vistime()` output is a `ggplot` object, you can customize and override literally everything: ```{r gg_customization, fig.height=2.5, fig.width=5, message=FALSE} library(vistime) data <- read.csv(text="event,start,end Phase 1,2020-12-15,2020-12-24 Phase 2,2020-12-23,2020-12-29 Phase 3,2020-12-28,2021-01-06 Phase 4,2021-01-06,2021-02-02") p <- gg_vistime(data, optimize_y = T, col.group = "event", title = "ggplot customization example") library(ggplot2) p + ggplot2::theme( plot.title = element_text(hjust = 0, size=10), axis.text.x = element_text(size = 10, color = "violet"), axis.text.y = element_text(size = 10, color = "red", angle = 30), panel.border = element_rect(linetype = "dashed", fill=NA), panel.background = element_rect(fill = 'green')) + coord_cartesian(ylim = c(0.7, 3.5)) ```